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Abstract

In this paper we consider a locus problem that originated in a practice examination for ad-
mission to Chinese universities. We have made the problem more interesting and challenging
by adding an optimization component. We also extend the locus and optimization problems to
sphere and hyperspheres. The original problem looks simple and yet can prove challenging to
many students. The solutions for locus in 2D are accessible to high school students. The solutions
for maximizing the area or rectangular box using Lagrange multipliers is accessible to university
students who have learned multi-variable calculus. Finally, optimization using Gröbner bases
can be understood by those graduate students who have grasped the concept.

1 Introduction
The following problem is typical of a Gaokao practice problem [1, 6]: one which is set on the Univer-
sity entrance examinations held across China. Although the problems may differ between provinces,
and between rural and urban settings, they are designed to be challenging.

We consider the following problem which is modified from the original practice problem [1].
Suppose a circle of radius 1 is centred at the origin, and a point C = (a, 0) with 0 < a < 1 is chosen.
Let E be a point on the circle, and F another point so that the angle FCE is a right angle. Let G be
chosen so that CEGF is a rectangle. The problem is to determine the locus of G as E moves around
the circumference of the circle. We remark that the original problem stated in [1] is when the radius
r = 6 and a = 4. To make the problem more challenging for university students, we follow up by
asking the maximum value of the area of the rectangle CEGF .

The problem is illustrated in Figure 1.
In this paper, we use a Dynamic Geometry Software (DGS) for exploring the problems and gain

some intuitions for possible solutions. Next we apply a Computer Algebra System (CAS) to verify
that our conjectures are valid.
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Figure 1: The problem

1.1 Explore with a DGS
We use a DGS such as GeoGebra [2] to conjecture what the locus will be and when the area yields a
maximum. It is not hard to set up the initial circle and points, and then use the Locus command to
obtain the locus. We might then make the guess that the locus was a circle. We can also determine
the area of the rectangle, and indeed plot that area against the angle of CE with the positive x-axis.

2 Finding the locus analytically
To find the locus of G analytically, we may start by letting the angle at the base of CE be θ. Let the
lengths of CE and CF be u and v respectively. Then the coordinates of E and F are:

E = (u cos θ + a, u sin θ), F = (a− v sin θ, v cos θ).

This can be seen in Figure 2.
Since E and F are both on a unit circle, it follows that

(a+ u cos θ)2 + (u sin θ)2 = 1, (v sin θ − a)2 + (v cos θ)2 = 1

and these equations can be rewritten as

a2 + 2u cos θ + u2 − 1 = 0, a2 − 2v sin θ + v2 − 1 = 0 (1)

By elementary symmetry,

G = E + F − C = (u cos θ + v sin θ − a, u sin θ + v cos θ).
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Figure 2: Lengths and angles

It is now not hard to show that the distance of G to the origin is independent of θ. To start:

(u cos θ + v sin θ − a)2 + (u sin θ + v cos θ)2 = u2 + v2 + a2 + 2au cos θ − 2av sin θ (2)

and the right hand side is easily obtained by expansion and repeated use of the identity sin2 θ +
cos2 θ = 1. However, equations (1) can be rewritten as

u2 + 2au cos θ = 1− a2, v2 − 2av sin θ = 1− a2.

Substituting these into the right hand side of equation (2) produces 2 − a2 which is the square of
the distance of G from the origin. Thus the locus of G is a circle centred at the origin and of radius√
2− a2.

A neater way involves vectors. Let OC be a, CE and CF be u and v respectively, and OE and
OF be E and F respectively. These are shown in Figure 3.

(0, 0) a

E
F u

v

Figure 3: Using vectors

Since by construction u and v are perpendicular, their scalar product is zero: u · v = 0. We also have
that

E = a+ u, ‖E‖ = 1, F = a+ v, ‖F‖ = 1. (3)
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The external point is obtained as
G = a+ u+ v.

Then

‖G‖2 = G ·G = (a+ u+ v) · (a+ u+ v)

= a · a+ u · u+ v · v + 2a · u+ 2a · v + 2u · v
= ‖a‖2 + ‖u‖2 + ‖v‖2 + 2a · u+ 2a · v. (4)

However, from equations (3) we have

‖E‖2 = ‖a+ u‖2 = (a+ u) · (a+ u) = 1

or
a · a+ 2a · u+ u · u = ‖a‖2 + ‖u‖2 + 2a · u = 1

and similarly
‖a+ v‖2 = a · a+ 2a · v + v · v = ‖a‖2 + ‖v‖2 + 2a · v = 1.

From equation (4) we have

‖G‖2 + ‖a‖2 = 2‖a‖2 + ‖u‖2 + ‖v‖2 + 2a · u+ 2a · v
= ‖a+ u‖2 + ‖a+ v‖2

= 2.

Thus
‖G‖2 = 2− ‖a‖2

which is equivalent to our previous result.

3 Optimizing the area
Again we can use the DGS to help determine the positions and values of the maximum and minimum
areas: the area A = (CE)(CF ) can be plotted against θ as shown in Figure 4. From this plot we
might guess that the maximum area is obtained when θ = 3π/4 and the minimum when θ = −π/4.
For both of these angles CE = CF and G lies on the x-axis.

To find the area of the rectangle, equations (1) can be solved to obtain

u = −a cos θ ±
√

1− a2 sin2 θ, v = a sin θ ±
√
1− a2 cos2 θ.

Choosing the positive sign in each of these expressions for u and v in order to ensure that the values
are positive, we have the area of the rectangle being

A =
(
−a cos θ +

√
1− a2 sin2 θ

)(
a sin θ +

√
1− a2 cos2 θ

)
.
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Figure 4: The area of the rectangle

We might guess that the largest rectangle will be obtained when θ = 3π/4 in which case u = v by
symmetry and so the rectangle is a square. At θ = 3π/4 we can find that

u =
1

2

√
2
(
a+

√
2− a2

)
v =

1

2

√
2
(
a+

√
2− a2

)
du

dθ
=

√
2
(
a2 + a

√
2− a2

)
2
√
2− a2

dv

dθ
= −

√
2
(
a2 + a

√
2− a2

)
2
√
2− a2

Since u = v and u′ = −v′ it follows that A′ = u′v + uv′ = 0 and hence θ = 3π/4 is a stationary
point for A.

Note that if we write R for
√
2− a2, being the radius of the circle which is the locus of G, then

the above four values can be neatly written as

u = v =
1√
2
(a+R), u′ = −v′ =

a√
2

(
1 +

a

R

)
=

a

R
√
2
(a+R).

Since A = uv then at θ = 3π/4

A =
1

2
(a+R)2 =

1

2
(a2 + 2a

√
2− a2 + 2− a2) = 1 + a

√
2− a2.

The above working is not conceptually difficult, but it is not trivial, and the scope for error in hand
calculation is very great. So we might attempt to ameliorate such errors by employing a computer
algebra system.
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4 Using a computer algebra system
Our choice is Sage [4], which is open-source, and has powerful geometric and algebraic capabilities.
Indeed, Sage was originally called SAGE, this being the acronym of “Software for Algebraic and
Geometric Experimentation”.

All of the steps from the previous sections can be easily implemented, starting by defining the
variables to be used and showing that the locus is a circle:

sage: var(’u,v,x,y,a,theta’)
sage: E = {x:a+u*cos(theta),y:u*sin(theta)}
sage: F = {x:a-v*sin(theta),y:v*cos(theta)}

Now the values of u and v can be computed:

sage: usol = solve(E[x]^2+E[y]^2-1,u)
sage: vsol = solve(F[x]^2+F[y]^2-1,v)

The external point G can be defined, and the square of its distance to the origin computed:

sage: G = {x:E[x]+F[x]-a,y:E[y]+F[y]}
sage: R = (G[x]^2+G[y]^2).trig_simplify().expand()
sage: R

2au cos(θ)− 2av sin(θ) + a2 + u2 + v2

Finally the values from the u and v solutions above can be substituted:

sage: R.subs({u:usol[0].rhs(),v:vsol[0].rhs()}).full_simplify()

−a2 + 2

4.1 Applying Gröbner bases and Lagrange multipliers
An alternate method to determine the locus of G is to use Gröbner bases. This requires using the ring
of polynomials over the rational numbers, in which all the equations defining the points and areas
can be written. Suppose the coordinates of E and F are (x1, y1) and (x2, y2). Their gradients to
C = (a, 0) must have a product of −1 so that

y1
x1 − a

y2
x2 − a

= −1

or simply that
(x1 − a)(x2 − a) + y1y2 = 0.

Since E and F are on the circle, and G has coordinates (g1, g2) = (x1 + x2 − a, y1 + y2) we can find
the locus of G as follows:
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sage: P.<x1,y1,x2,y2,g1,g2,a> = PolynomialRing(QQ)
sage: onCircle = [x1^2+y1^2-1,x2^2+y2^2-1]
sage: perpendicular = [(x1-a)*(x2-a)+y1*y2]
sage: g_point = [g1-x1-x2+a,g2-y1-y2]
sage: I = P.ideal(onCircle + perpendicular + g_point)
sage: I.elimination_ideal([x1,y1,x2,y2])

(g21 + g22 + a2 − 2)Q[x1, y1, x2, y2, g1, g2, a]

This last may be interpreted to be equal to zero, thus

g21 + g22 = 2− a2

which shows that the locus is a circle. Note that here we did not have to make any assumptions about
the shape or nature of the locus; we just computed a relationship between the coordinates of G and
the fixed value a.

To explain the previous approach a little: we have created a polynomial ideal; which may be
considered as the closure under addition and polynomial multiplication from an initial set—in our case
this set consisted of the polynomials which define the relationships between all the coordinates. A
Gröbner basis may be considered as an alternative spanning set for the ideal consisting of polynomials
with decreasing numbers of variables; in a sense a Gröbner basis is analogous to a triangularization of
a linear system. In Sage, the elimination_ideal method creates a Gröbner basis and returns the
polynomial from that basis which is independent of the given variables. An elegant and elementary
introduction to Gröbner bases is given by Sturmfels [5].

We can also investigate the maximum size of the rectangle, using Lagrange multipliers. We have
to maximize A = (CE)(CF ), or

A2 = ((x1 − a)2 + y21)((x2 − a)2 + y22).

The constraints are:

x2
1 + y21 = 1

x2
2 + y22 = 1

(x1 − a)(x2 − a) + y1y2 = 0.

Thus we need to solve the simultaneous first derivatives of

L = ((x1−a)2+y21)((x2−a)2+y22)+λ1(x
2
1+y21−1)+λ2(x

2
2+y22−1)+λ3((x1−a)(x2−a)+y1y2).

Using Sage we can set up the expression and compute its derivatives

sage: var(’x1,y1,x2,y2,a,lambda1,lambda2,lambda3’)
sage: L = ((x1-a)^2+y1^2)*((x2-a)^2+y2^2) + lambda1*(x1^2+y1^2-1)
sage: L += lambda2*(x2^2+y2^2-1) + lambda3*((x1-a)*(x2-a)+y1*y2)
sage: diffs = [diff(L,x1), diff(L,x2), diff(L,y1), diff(L,y2)]
sage: diffs += [diff(L,lambda1),diff(L,lambda2), diff(L,lambda3)]
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Now to solve the equations, we can try to obtain an expression giving the area in terms only of a, by
using again Gröbner bases:

sage: P.<x1,y1,x2,y2,a,lambda1,lambda2,lambda3,K>\
....: = PolynomialRing(QQ)
sage: I = P.ideal(diffs+[K^2-((x1-a)^2+y1^2)*((x2-a)^2+y2^2)])
sage: E = I.elimination_ideal([x1,y1,x2,y2,lambda1,lambda2,\
....: lambda3])
sage: Q0 = E.gen(0).factor()[1][0]
sage: var(’K’)
sage: solve(SR(Q0),K)

[K = −
√
−a2 + 2 a+ 1, K =

√
−a2 + 2 a+ 1]

The second value is clearly positive; it can be written as

K = 1 + a
√
2− a2

which of course is our original result. For further information about Lagrange multipliers a good
references is Lagrange’s own description, which has been translated into English [3].

5 Alternative method
Another method of approaching the rectangle size, which will be easier to generalize to higher dimen-
sions as we shall show later, is to consider the distances from each vertex of the rectangle CEGF to
the point p = (0, 0). Clearly the distances of C,E, F,G to p are a, 1, 1,

√
2− a2 respectively. This is

shown on the left in Figure 5, and the rectangle itself, without the circles, is shown on the right.
We introduce the lengths s and t as the projections of pC onto the rectangle sides CE and CF

respectively. Note that since s2 + t2 = a2, we have
√
1− s2 =

√
1− a2 + t2 and

√
1− t2 =√

1− a2 + s2. Thus the area to be maximized is

A = (s+
√
1− a2 + s2)(t+

√
1− a2 + t2)

subject to the condition s2 + t2 = a2. In order to apply the method of Lagrange multipliers, consider
the expression

B = (s+
√
1− a2 + s2)(t+

√
1− a2 + t2) + λ(s2 + t2 − a2)

and its derivatives:

∂B

∂s
=

(
1 +

s√
1− a2 + s2

)
(t+

√
1− a2 + t2) + 2λs (5)

∂B

∂t
= (s+

√
1− a2 + s2)

(
1 +

t√
1− a2 + t2

)
+ 2λt (6)

∂B

∂λ
= s2 + t2 − a2. (7)
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Figure 5: The rectangle parameterized for maximizing its area

Setting the first two equations equal to zero, and simplifying, we obtain

(s+
√
1− a2 + s2)(t+

√
1− a2 + t2) + 2λs

√
1− a2 + s2 = 0 (8)

(s+
√
1− a2 + s2)(t+

√
1− a2 + t2) + 2λt

√
1− a2 + t2 = 0 (9)

From these equations, it follows that

s
√
1− a2 + s2 = t

√
1− a2 + t2.

Squaring both sides and rewriting this expression leads to

(s2 − t2)(1− a2 + s2 + t2) = 0.

Since a2 < 1 the second bracket is always positive, and so we have s2 = t2 or s = ±t. Since
s2 + t2 = a2 we have the values s, t = ±a/

√
2, leading to the areas:

A(a/
√
2, a/

√
2) = 1 + a

√
2− a2

A(a/
√
2,−a/

√
2) = 1− a2

A(−a/
√
2,−a/

√
2) = 1− a

√
2− a2

These areas are given in decreasing value, as can be shown analytically, but it is easier to consider the
plots of the three area functions in terms of a as shown in Figure 6.

This shows that the largest area is obtained with s = t = a/
√
2 and has value 1 + a

√
2− a2, as

we found previously.
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Figure 6: Plots of area functions

6 Extending the Problem to Higher Dimensions
The above computations regarding locus can easily be extended to a sphere. Suppose the sphere has
radius one, and we choose a point C in its interior. Let E, F and G be three points on the surface
so that CE, CF and CG are all pairwise perpendicular. Consider these three lines as the edges of
a rectangular cuboid with common vertex C, and let H be its opposite vertex. This is illustrated in
Figure 7.

Then the locus of H is a sphere.
In order to see this, we adopt an approach similar to that for the circle, and define the vectors

a = OC, u = CE, v = CF, w = CG, E = OE, F = OF, G = OG, H = OH.

Then
a+ u = E, a+ v = F, a+w = G

and
‖E‖2 = ‖F‖2 = ‖F‖2 = 1

C

E

F

G H

Figure 7: The locus problem on a sphere
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and also
u · v = u ·w = v ·w = 0.

Finally,
H = a+ u+ v +w.

Using the same methods as for the circle,

‖H‖2 + 2‖a‖2 = ‖a+ u‖2 + ‖a+ v‖2 + ‖a+w‖2

= ‖E‖2 + ‖F‖2 + ‖F‖2

= 3

and so
‖H‖2 = 3− 2‖a‖2.

Again this can be done in Sage. Let the three points on the surface have coordinates (xi, yi, zi) for
i = 1, 2, 3 and let C = (a, 0, 0). Perpendicularity can be characterized by the usual scalar product in
R3, so that for i 6= j:

〈xi − a, yi, zi〉 · 〈xj − a, yj, zj〉 = 0

or that
(xi − a)(xj − a) + yiyj + zizj = 0.

We can describe H in terms of E, F, and G by

H = a+ u+ v +w

= a+ (E− a) + (F− a) + (G− a)

= E+ F+G− 2a.

This means that the coordinates of H are given as

H = (x1 + x2 + x3 − 2a, y1 + y2 + y3, z1 + z2 + z3).

Now we can set up all the equations, and simplify them by the computation of a Gröbner basis:

sage: P.<x1,y1,z1,x2,y2,z2,x3,y3,z3,g1,g2,g3,a> = PolynomialRing(QQ)
sage: onSphere = [x1^2+y1^2+z1^2-1,x2^2+y2^2+z2^2-1,x3^2+y3^2+z3^2-1]
sage: perpendicular = [(x1-a)*(x2-a)+y1*y2+z1*z2,

(x1-a)*(x3-a)+y1*y3+z1*z3,(x3-a)*(x2-a)+y3*y2+z3*z2,]
sage: h_point = [g1-x1-x2-x3+2*a,g2-y1-y2-y3,g3-z1-z2-z3]
sage: I = P.ideal(onSphere + perpendicular + h_point)
sage: I.elimination_ideal([x1,y1,z1,x2,y2,z2,x3,y3,z3])

(g21 + g22 + g23 + 2a2 − 3)Q[x1, y1, z1, x2, y2, z2, x3, y3, z3, g1, g2, g3, a]

This corresponds with the vector result obtained above: the locus is a sphere with radius r2 = 3−2a2.
Note that we made no assumptions about the geometry of the locus: the input consisted only of
the polynomial relationships between the vertex coordinates; the output was a relationship which
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Figure 8: Setting up the three dimensional volume

characterises a sphere. This is similar to our computations for the circle, where again we made no
assumptions about the geometry of the locus.

To maximize the volume of the cuboid, suppose that it is aligned with the xyz axes, and with C
at the origin, and p at (s, t, u), as for the rectangle in Figure 5. The vertex at C is shown in Figure 8.

From the diagram, we have pE ′ =
√
t2 + u2 and so

E ′E =
√
1− t2 − u2 =

√
1− a2 + s2

which means
CE = s+

√
1− a2 + s2.

Thus the volume is given by

V =
(
s+

√
1− a2 + s2

)(
t+

√
1− a2 + t2

)(
u+

√
1− a2 + u2

)
and this is to be maximized subject to s2+ t2+u2 = a2. By exactly the same argument with Lagrange
multipliers as above, we show that optimal values of V will be obtained when s2 = t2 = u2 = a2/3,
and so each of s, t, u = ±a/

√
3. The maximum value will be obtained when s = t = u = a/

√
3 to

obtain edge lengths CE, CF and CG all equal to

a/
√
3 +

√
1− a2 + a2/3 =

1√
3

(
a+

√
3− 2a2

)
and a volume of (

1√
3

(
a+

√
3− 2a2

))3

=

√
3

9

(
9a− 5a3 + (a2 + 3)

√
3− 2a2

)
.
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Now it is easy to consider n-dimensions. We suppose a is a vector with ‖a‖ < 1, and there are n
vectors ui all of which are pairwise orthogonal, and all of which satisfy ‖a + ui‖ = 1. We are to
consider the locus of g = a+ u1 + · · ·+ un.

We have

‖g‖2 = g · g
= (a+ u1 + · · ·+ un) · (a+ u1 + · · ·+ un)

= a · a+ 2a · u1 + · · ·+ 2a · un + u1 · u1 + · · ·+ un · un

and all the other products ui · uj = 0 by orthogonality. Adding (n− 1)a · a to both sides produces

‖g‖2 + (n− 1)a · a = a · a+ 2a · u1 + u1 · u1+

a · a+ 2a · u2 + u2 · u2

+ · · ·+ a · a+ 2a · un + un · un

= (a+ u1) · (a+ u1) + (a+ u2) · (a+ u2)

+ · · ·+ (a+ un) · (a+ un)

= ‖a+ u1‖2 + ‖a+ u2‖2 + · · ·+ ‖a+ un‖2

= n

from which we obtain
‖g‖2 = n− (n− 1)‖a‖2.

Writing ‖a‖ = a gives us the locus of the external point being an n-sphere with radius r2 = n− (n−
1)a2.

To maximize the hyper-volume, we note that it is given by the expression

H =
n∏

i=1

(
xi +

√
1− a2 + x2

i

)
subject to

x2
1 + x2

2 + · · ·+ x2
n = a2.

From the reasoning above, the maximum volume is obtained when all the xi values are equal to a/
√
n.

Thus the maximum volume for n dimensions will be(
1√
n

(
a+

√
n− (n− 1)a2

))n

.

Expressions for n = 4, 5, 6 are:

V4 =
1

2

(
2− a4 − (a3 − 2a)

√
4− 3a2

)
V5 =

√
5

125

(
41a5 − 150a3 + 125a+ (25 + 10a2 − 19a4)

√
5− 4a4

)
V6 =

1

27

(
22a6 − 45a4 + 27 + (7a5 − 30a3 + 27a)

√
6− 5a2

)
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7 Discussions and future work
A nice problem is to explore, using a DGS, what happens to the locus for the circle case if the angle
FCE is changed to something other than 90 degrees. In fact, we can prove that if the angle FCE is
60 degrees, the locus will not be a circle. The explorations of other angles is a fruitful line of enquiry
which the authors will discuss in a future paper. Another possibility for exploration is to replace the
circle by an ellipse and consider the following questions:

1. Given an ellipse with a chosen internal point, and with a fixed angle FCE as in Figure 1, what
is the locus of G?

2. What is the maximum value of the area of the parallelogram CEGF ?

Note that because the ellipse is not as symmetric as the circle, we could also choose a different point
C within the ellipse; one that is not on either of the major or minor axes for example.

Extending our sphere scenario to an ellipsoid produces the scenario: we are given a fixed ellipsoid
with the major axes, OA ≥ OB ≥ OC and an internal point C. For example we could choose
C = (a, 0, 0) with a ≤ OC. Let E = (x1, y1, z1), F = (x2, y2, z2), G = (x3, y3, z3) be three points
on the ellipsoid. We further suppose that each pair of vectors from CE,CF and CG have a fixed
angle β between them. Considering the parallelepiped formed by CE,CF and CG, we may ask the
following questions:

1. If H is a symmetric point of G for the parallelepiped, what is the locus of H?

2. Find the largest possible value of the volume of the parallelepiped.

As for the two-dimensional problem above, we could choose other places for C.
Initial exploration indicates that these problems are difficult to solve in complete generality, which

leads to the further problem of considering what ellipsoid parameters, internal point positions, and
common angles lead to curves or surfaces which can be easily described.

8 Conclusion
Finding a curve defined by the locus of a moving point is popular and often asked in Gaokao in
China. Typically students are allocated no more than 10 minutes to solve one problem. Under such
circumstances, it is not hard to imagine that many students may lose interest and may even decide
to give up to solving these types of problems. It is clear that technological tools can provide us
with crucial intuition before we attempt more rigorous analytical solutions. Here we have gained
geometric intuitions while using GeoGebra. In the meantime, we use the computer algebra system,
Sage, for verifying that our analytical solutions are consistent with our initial intuitions. In this paper,
we started out with a simple locus problem but we added an optimization component and investigated
several scenarios including ones in 2D, 3D and beyond. The complexity level of the problems we
posed vary from the simple to the difficult: some of our solutions are accessible to students from
high school; others require more advanced mathematics such as university or even graduate levels.
Evolving technological tools definitely have made mathematics fun and accessible on one hand, but
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they also allow the exploration of more challenging and theoretical mathematics. We hope that when
mathematics is made more accessible to students, it is possible more students will be inspired to
investigate problems ranging from the simple to the more challenging.

We do not expect that exam-oriented curricula will change in the short term. However, encourag-
ing a greater interest in mathematics for students, and in particular providing them with the techno-
logical tools to solve challenging and intricate problems beyond the reach of pencil-and-paper, is an
important task for many educators and researchers.
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